The flow index and strongly connected orientations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strongly 2-connected orientations of graphs

We prove that a graph admits a strongly 2-connected orientation if and only if it is 4-edge-connected, and every vertex-deleted subgraph is 2-edge-connected. In particular, every 4-connected graph has such an orientation while no cubic 3-connected graph has such an orientation.

متن کامل

On strongly connected orientations of graphs

We consider finite, loopless graphs or digraphs, without multiple edges or arcs (with no pairs of opposite arcs). Let G = (V,E) be a graph. A digraph D = (V,A) is an orientation of G if A is created from E by replacing every edge of E by an arc in one direction. Let nd denote the number of vertices with the degree d in G. By the degree pair of a vertex v ∈ V in D the ordered pair [outdegree(v),...

متن کامل

On spectral radius of strongly connected digraphs

 It is known that the directed cycle of order $n$ uniquely achieves the minimum spectral radius among all strongly connected digraphs of order $nge 3$. In this paper, among others, we determine the digraphs which achieve the second, the third and the fourth minimum spectral radii respectively among strongly connected digraphs of order $nge 4$.  

متن کامل

Finding a feasible flow in a strongly connected network

We consider the problem of finding a feasible single-commodity flow in a strongly connected network with fixed supplies and demands, provided that the sum of supplies equals the sum of demands and the minimum arc capacity is at least this sum. A fast algorithm for this problem improves the worst-case time bound of the Goldberg-Rao maximum flow method[3] by a constant factor. Erlebach and Hageru...

متن کامل

Cell rotation graphs of strongly connected orientations of plane graphs with an application

The cell rotation graph D(G) on the strongly connected orientations of a 2-edge-connected plane graph G is de5ned. It is shown that D(G) is a directed forest and every component is an in-tree with one root; if T is a component of D(G), the reversions of all orientations in T induce a component of D(G), denoted by T−, thus (T; T−) is called a pair of in-trees of D(G); G is Eulerian if and only i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: European Journal of Combinatorics

سال: 2018

ISSN: 0195-6698

DOI: 10.1016/j.ejc.2017.12.009